
The fixed-spin-method and fluctuations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 4635

(http://iopscience.iop.org/0953-8984/1/28/012)

Download details:

IP Address: 171.66.16.93

The article was downloaded on 10/05/2010 at 18:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 4635-4642. Printed in the UK 

The fixed-spin-moment method and fluctuations 

D Wagner 
Institut fur Theoretische Physik, Ruhr-Universitat Bochum, D 4630 Bochum, 
Federal Republic of Germany 

Received 31 October 1988 

Abstract. Using the fixed-spin-moment method of Moruzzi and co-workers, we develop 
a general theory of the thermal and magneto-mechanical properties of weak itinerant 
ferromagnets in terms of spin and density fluctuations. Special attention is given to Invar 
effects. 

1. Introduction 

Spin fluctuation theory has added much to our present understanding of itinerant 
ferromagnetism [l]. In this paper we focus our attention on the weak limit of the general 
spin fluctuation theory, which was first dealt with in the frame of a Ginzburg-Landau 
theory of Murata and Doniach [2]. Later, Lonzarich was quite successful in applying this 
approach of the magnetic properties of weakly itinerant ferromagnets [3]. The magneto- 
mechanical properties, particularly the Invar effects, have been discussed less thoroughly 
[4]; for a recent review with special attention to the experiments we refer to Wassermann 

A crucial point of the theory is the connection of thermal properties with band 
structure calculations. Therefore the development of the fixed-spin-moment (FSM) 
method of Moruzzi et a1 [6], which gives the energy E as a function of the magnetisation 
M and the volume V ,  presents a firm basis for describing thermal effects of weak 
itinerant systems. Following essentially Murata and Doniach [2], we formulate a general 
fluctuation theory which includes spin fluctuations as well as density (volume) fluc- 
tuations. The latter ones are normally neglected; but FSM calculations have revealed that 
Invar effects might be traced back to a band structure, which exhibits two stationary 
points: a ferromagnetic minimum and a saddle point with vanishing moment, which 
differ only slightly in volume and energy [6]. In cases like this, it is not at all obvious that 
density fluctuations can be excluded, although the ferromagnetic phase transition is 
driven by magnetic fluctuations. Similar lines, discussing longitudinal spin fluctuations 
only have been followed by Entel et a1 [7]. 

A quite different approach, particularly to magneto-volume effect has been devel- 
oped by Kim [8] and Zverev and Silin [ 9 ] .  Their approach is based on the renormalisation 
of the frequency spectrum of phonons due to the ferromagnetism of the electrons. 
These theories take full account of quantum effects which should be important for low 
temperatures and which are left out of theories that treat thermal fluctuations as classical 
excitations. It is not quite clear whether quantum effects are relevant for the weak 
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itinerant ferromagnet discussed in this paper. In a sense, both approaches are comp- 
lementary; for higher temperatures, classical thermal fluctuations should dominate. 

2. General theory 

We assume that the energy of a metallic system with N atoms has been calculated at 
temperature T = 0 as function of the magnetisation per atom M O  and the volume per 
atom V,: NE(M,, V,), where Eis now the energyper atom. Thermal effects are described 
by adding magnetic fluctuations m(r) and volume (density) fluctuations U(.) to M O  and 
Vo,  respectively, which depend on the spatial variable r only. m(r) and u(r) are non- 
centred random variables. Changing to centred variables m(r) + m(r) - (m(r ) ) ,  where 
(m(r))  indicates a statistical mean value of the variable, we change from MO + m(r) to 
M O  + (m(r) )  + m(r) - (m(r) )  and from Vo + u(r)  to Vo + ( u ( r ) )  + u(r)  - ( ~ ( r ) ) .  The 
quantities MO + (m(r ) ) ,  Vo + ( u ( r ) )  are now interpreted as thermodynamic variables, 
the magnetisation M and the volume V .  m(r) and u(r)  are then random variables with 
vanishing mean values. The energy should be a complicated functional of m(r) and u ( r ) ;  
however, we assume, as is usually done for weak itinerant ferromagnets, that the 
fluctuations vary on a spatial scale that is larger than the range of the interactions and 
use a 10~31 approximation for the functional. Non-local effects are taken into account by 
the lowest-order gradient terms. The Hamiltonian of the fluctuations is then given by 

C D 
E[M + m(r) ,  V + u ( r ) ]  + -E (Vimi)* + - [Vu(r)]’)  

2 i j  2 

where i, j denote components of the magnetic fluctuation and the gradient, respectively. 
In principle, one should introduce three constants Ci, i = 1,2 ,3 ,  and three constants D j  
as well, with C ,  = C2 = C ,  and C3 = Cil, etc., because of a possible dependence of these 
constants on the magnetisation M .  In the limit of weak itinerant ferromagnetism, 
however, one can neglect this dependence. 

The free energy F ( M ,  V ,  7‘) is now given by F = - kB T In Z and the partition func- 
tion Z by a classical integral over the phase space of the fluctuations 

The functional integration of the exponent can be performed only approximately. We 
approximate 2t by a general translationally invariant quadratic form Xo:  

X 0  = z b / d 3 r I d 3 r ’  Q i ( r -  r’)mi(r)mi(r’)  
I 

1 r  r + - d 3r  d 3r’ w(r - r’)u(r)u(r’) .  
V ‘ J  J (3) 

The functions Qi and w are chosen by the condition that the right-hand side of the Peierls 
inequality F G Fo + ( H  - Ho),  is a minimum.. 

Fo = -k ,TlnZo 2, = dre-p’o I 
where ( )o indicates a statistical mean value over the approximate Boltzmann distri- 
bution. We now introduce Fourier-transformed quantities 
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which gives 

= N 2 QkilmkiI2 N W q l U q 1 2 .  
k ,  i Q 

Since mki = mTki and u k  = U T k ,  we have from mki = xki + iyki, uq = pq + iq,, 

The random variables are therefore not totally independent of each other. The space 
phase integral f dI '  is given as a product of integrals over the independepent variables 

The integrals are easily performed. Choosing the right-hand side of the Peierls 

xki = X - k i  Y k i  = - Y - k i  Pq = P-q Y q  = -Y-,. 

{ x k i ,  Y k i ,  Pq, rq> with kz > 0, qz > 0. 

inequality as the approximate free energy Fone  gets after integration: 

where we dropped the index in ( )o. The approximate free energy is then: 

where rp is the mean value 

( 5 )  
1 

NV 
Q, = -1 d3r(E(M + m, V + U) - E ( M ,  V)). 

Obviously Q, is a function of the mean values of the local fluctuations mT(r), u2(r) and of 
M and V 

{Qki} and {w,} are now determined by aF/aQki = aF/dw,  = 0 which gives 

With the help of these equations the final form of the free energy is given by 

Q, = N ( m " ) > ,  ( U 2 > ,  M ,  VI. 

Qki = (C/2)k2 + aq/a(m:) w g  = (0/2)q2 + a q / a ( u 2 ) .  (6) 

Equations (5)-(7) fully determine the thermal properties of the system. 

3. The equations of state 

The derivation of the equations of state from the free energy F(T, M ,  V) depends 
on some assumptions concerning the dependence of the constants C and D on the 
magnetisation and volume. The dependence of C ,  which determines the excitation 
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energy of the spin fluctuations Qk,, has been discussed to some extent by Lonzarich [3]. 
In the weak limit, this dependence can be neglected to lowest order in M .  The same kind 
of reasoning certainly applies to the dependence of D on M ,  which determines the energy 
of the density fluctuation, although the Kim-Silin approach is in essence based on this 
dependence; formally, this could be taken into account by a formal expansion of D in 
powers of M 2 .  Both dependences are left out here, the dependence on M as well as the 
dependence on V ,  the latter one because of the small change in volume (ca. 1%) over 
the whole temperature range. 

Under these assumptions and using equations (4) and (6), it is easy to derive the 
magnetic equation of state from the free energy as given by equation (7): 

H = (amw,. = ( W a M ) ”  + ( a c p / a M ) T , ” , m , , u  = ( m ) / m T , v . m , , u  (8) 
in short notation, where ( E )  is the generalised (including fluctuations) mean value of the 
energy of the FSM method. The indices in equation (8) indicate that T, V ,  { ( m f ) }  and (u2 )  
have to be kept fixed while performing the derivatives. 

In very much the same way one obtains the mechanical equation of state 

p = - ( w a w T , M  = - [ W / d V ) , ,  + ( a c p / a v ) T , M , m , , u l  = - ( ~ ( E ) / W T , M . m , , u .  

(9) 
The entropy S turns out to be very similar in form to the entropy derived by Murata and 
Doniach [ 2 ] ;  one obtains 

and from this results the specific heat at constant magnetic field and constant 
pressure P: 

(10) 
The first terms correspond to the classical Dulong-Petit law, x k t  1 and zql being the 
number of spin and density fluctuations, respectively. It has been tacitly assumed that 
the cut-off wave vectors k,, qc, which have to be introduced in equation (4), do not 
depend on the temperature T. The derivatives with respect to the temperature are partial 
because H and P have to be kept fixed, but they are total because one has to take into 
account the indirect dependence of cp on Tvia M ,  V{(m:)} and (u2) .  

Equations (8), (9) and (10) form a complete set of equations if supplemented by the 
definition of cp (equation5), and by the self-consistencyequationsofthelocalfluctuations 
given by (4). If the integrations over k and q are performed, one gets from (4): 

withf(x) = 1 - (l/x) tan-l(x). An analogous formula holds for (u2) .  Because of the 
symmetry of the system one has (m:) = (m;) = (m?),  (m:) = (mi)  for fluctuations that 
are perpendicular or parallel to the magnetisation. The unknown constants C, D ,  k,, qc 
can in principle be derived from experiment [3,10]; this problem as well as the possible 
temperature dependence of the cut-off has been discussed extensively by Lonzarich [3] .  

If we restrict to magnetic phase transitions, the onset of a ferromagnetic instability 
should be connected with a pole in the k-dependent susceptibility ~ - ‘ ( k )  = Q k  at k = 0 
for T 2 T,, where Tc is the Curie temperature. At T = Tc we have 
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(aV,la(m3)T=Tc = 0. (12) 

On the other hand, the critical temperature is derived from the vanishing of the linear 
term in the magnetisation of the equation of state (for H = 0), i.e. from 

( a E / a M 2  + dV/aM2)T=TC = 0 (13) 
assuming that E as well as Q, are dependent on @ only. For consistency, both equations 
(12) and (13) must be fulfilled. It will be shown that this necessary condition restricts 
appreciably the numerical methods that can be used to evaluate the complete set of 
equations (8)-( 11). 

4. Applications 

Explicit calculations can only be done numerically. Only in the limit T+ 0 Q, can be 
given as an expansion in powers of the fluctuations since (m:), (u2)  + 0 in this limit. The 
calculation is straightforward; one finds up to order 0 ((mf), ( u 6 ) ) :  

From this follow the equations of state. One finds in the lowest order of the fluctuations 

a E  a 3 E  (mi)  a 3 E  H = - + i(u2) - + -- 
dM d M a V 2  2 dM3 

-p=-+f(u2)-+--+-- a E  a 3 E  (m:) a 2 E  (mi )  a 3 E  
av aV3 M d M a V  2 d V a M 2 '  

For T+ 0 the FSM energy E ( M ,  V )  should be expanded in powers of M - M O ,  V - Vo, 
where ( M O ,  V,) denotes the minimum of energy for T = 0. Obviously M - M O  and 
V - Vo depend linearly on T as usual. For the change of the volume one gets: 

v - v  l ( u 2 )  a3Eoa2E0  a3Eo 
' - 2  A ( 8 V ;  aM', aModV ' ,aModVo  

(mi ) (  d3Eo --- a 2 E o  a3Eo a2Eo 1 
2 A  avo aM8 aM', a M ;  aMo avo +- 

with 

A = (d2Eo/aMo avo)' - (a2Eo/aM',)a2EO/dV$ < 0 

since ( M O ,  V,) is a minimum of the energy. In this approximation, the magneto-volume 
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effect depends only on the longitudinal spin fluctuations, and the coefficients depend 
only on the local properties of the minimum in the M ,  V plane. 

There is a subtle point in using a power expansion in terms of the fluctuations. If this 
is used over the whole temperature range, then one can easily verify that the consistency 
equations (12) and (13) at T = Tc can never be fulfilled by a finite series in powers of 
(m:) and (u2) ,  since equatlon (13) contains always additional higher-order derivatives in 
M 2  than equation (12). The only possibility of circumventing this problem is to use a 
polynomial for E(M + m, V + U) that treatsM andm on the same footing since it is easily 
shown that every term ( ( M  + m)2p), where p is a positive integer, fulfills equations (12) 
and (13). Therefore it is not possible to use any other approximation scheme than 
polynominals in M and V to solve the equations of state numerically over the whole 
temperature range. This justifies the generalised Landau expansions of Shimizu [lo] for 
instance, which should be interpreted as a mathematical approximation to the true 
function E = E ( M ,  V). For the simple case of a Landau expansion 

E ( M ,  V) = E ( M )  = (A/2)M2 + (B/4)M4 

one then gets from equation (12) 

from which one recovers the well known equation of state [3,11]: 

H = (A + 3(mi) + 2(m:))M + B M 3 .  

This case has been extensively discussed by various authors; near the critical temperature 
one has to face the possibility of a first-order phase transition, which is an artifact of the 
harmonic approximation as given by equation (3) [2,3, 121. Eventually, this difficulty 
may be overcome by improving the self-consistency equations (4) along the lines dis- 
cussed by Lonzarich [3]$. As a result one obtains local moments (m!) which increase 
continuously with temperature (almost linearly) as one should expect from the under- 
lying classical point of view. 

Finally we want to discuss a simple example, suggested by D M Edwards, in order to 
show that spin fluctuations may contribute substantially to magneto-volume effects as 
observed in Invar alloys. For Fe3Ni it was shown by Moruzzi et a1 [6] that in the ( M ,  V) 
plane there is a minimum of the energy at M O  = 1.55 Bohr magnetons/atom at a volume 
of V, = 74 au/atom. A saddle point is found with M I  = 0 and V1 = 70 au/atom, which 
differs in energy from the minimum by an amount EB = 6 mRyd/atom. Due to the 
large magnetic moment Fe3Ni cannot necessarily be interpreted as a weak itinerant 
ferromagnet; however, one might expect that on changing the composition-and 
thereby diminishing the magnetic moment-the overall band structure should not 
change very much. 

An ansatz like 

E = A(V - aM2)’ + p(V - Vo)2 

describes the overall band structure of this type of alloy, with 

The calculation is straightforward. For Q, we get from equation ( 5 )  in this case: 
t It is remarkable that the general FSM method does not necessarily lead to a first-order transition [13]. 
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Q, = (A + p)(u2) + 4a2AM2(mi) - 2aA(V - aM2) (m?) 
i 

From this follow the equations of state: 
H = -4&W(V - &I2) + 4a2AM(3(mf) + 2(m:)) 
-P = 2A(V - aM2)  + 2p(V - V,) - 2aA((mi) + 2(m3) .  

M 2 ( T )  = M i ( 1  - ( m " r ) ) / k " c )  

Neglecting transverse spin fluctuations we get from the equations of state for 
H = P = O :  

where ( m ~ ~ ( r ) ) ~  is the local fluctuation at T = Tc and where (m2(r)) as a classical quantity 
should increase more or less linearly with temperature. 

From this 

(dw/dT)rC-o/(dw/dT)TC+o = -2Vo/Vi 

( m 2 W c  = [Vl/(Vl + 2VO>lMi. 

W T = T c  = -2(V0 - Vi)/(V, + 2V0). 

assuming the continuity of the derivatives of the fluctuations. Furthermore we have 

From this the magneto-volume effect at T = Tc is given as 

Inserting the data of Fe3Ni we have wT=rC = 0.04 which is even a bit too large [ 5 ] .  
Assuming (m2) = (m2)C( T/Tc(P = 0)) for pressure P # Oand assuming furthermore that 
(m2)C does not depend on the pressure, one obtains for the variation in the Curie 
temperature with pressure P 

The dependence of M ,  w and Tc(P) on Vo, V1 and EB is quite plausible. 

self-evident notation we have 

(dTc/dP)Ip=o = -Tc(Vo - V ~ ) / ~ E B .  

The inclusion of transverse spin fluctuations changes these results appreciably. In 

M 2 ( T )  = M i ( 1  - (mf ) / (m2)T=Tc)  - 2((m:> - (mi))  

(m )r=rc = [V1/(3V1 + 2Vo>IM20 2 

0 = -2(Vo/V1 - l ) (mi) /Mi 
w = -(1 - Vl/V0)(l - 3(m2)/M$) 

T <  Tc 

T a  Tc 

(w)r=rc  = - V o  - Vi)/(2Vo + 3V1) 
and again assuming continuity of the derivatives, 

(dw/dT)rc-o/(dw/dT)rC+o = jVo/Vi. 
The shift in the Curie temperature, dT,/dP, is smaller by a factor of 4. 
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Using the same assumptions it is not difficult to relate the discontinuity of the specific 
heat at T = Tc to the band structure parameters V,, VI, M O  and EB. But since the 
resulting expression is somewhat cumbersome, it is omitted here. 

From these results it is obvious that spin fluctuations contribute substantially to the 
magneto-volume effect (Invar) and it is clear that transverse fluctuations cannot be 
neglected. However, it should be kept in mind that the simple model does not take into 
account the more refined details of an explicit fixed spin moment calculation. A numerical 
calculation for the Fe,Ni system is given in [ 131. 
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